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ABSTRACT
This study treats the effect of the interaction between underground
structures and the surrounding soil in reducing the loads transmitted to the
structure, the so-called "arching" phenomenon.

A continuum theory of soils proposed by G. A. Geniev is applied to a

quasi-static, plane-rtrain problem of arching. The basic partial differential

equations are shown to form a hyverbolic set and are solved by the method of
characteristics. Consistent streas and velocity fields are obtained.

Comparison with available experimental results shows that the Geniev
theory underestimates the surface preasure required for failure of an
underground structure in relatively dense granular soils. The source of
this dirficulty is explained and an abpproximate method of overcoming it is
presented.

A simplified extension to a theory taking account of inertia of the soil
and unsteady motions is treated in an appendix.
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INTRODUCT1ON TO THE SOIL-STRUCTURE INTERACTION PROBLENM

1.1 Object and Scope

The purpose of the main part of this report (Chapters 1-6) is to
investigate the applicability of a continuum theory of granular media to
the problem of soil-structure interaction of underground structures. The
problsm essentially involves a determination of the effect of arching' h2
in granular soils on the pressure transmitted to a buried structure when the
ground surface is subjected to a loading in the form of an alr overpressure
such as would result from the detonation of a high-yield nuclear device.

The air overpressure loading is assumed to result from an air burst
occurring either high above the ground surface or near the ground surface
with a superseismic velocity of propagetion of the pressure wave, s0 that
only the air-induced pressure need be considered. The air-over-pressure
loading is essumed to vary siowly with tise and to be uniformly distributed
over an infinitely large ares ss far a1 the underground structure is concerned.
A prassure distridution of this type is adequete for sn introdectory study.
For the truly dynamic problem & more realistic pressure distribution is

needed. In the superseismic case the pressure wave propagetes dowrmard

through the soi! inclined at &n sngle to the ground surface; I pawerer for

simplicity the pressure wove it estumed to propegete vertically dowwars
with the wave front parsilel to the gruund surfars.

The soil is considered to be a homogensous, isotropic, grenviar
materia! having some cohesion end setisfying the Coulomb-Rohr fa!lure
criterion which states that siip or fallure occurs ot & polat uhen the sheer
stress on some place through the point (s squal to the wm of the cohesion

and & function of the normel stress acting on the ssme plans. On no pione




can the shear stress exceed this sum. The function of the normal stress is
taken to be a constant, namely, the tangent of the angle of internal friction
¢, times the normal stress. The fact that the failure criterior depends on
the hydrostatic part of the stress tensor and not simply on the deviatoric
part, as is the case in the theory of plasticity for metals, adds an important
comp'ication to the problem as will be seen later.

The structure to be considered ‘s a long, rectanguiar plate, simply
supported at th: edges. It is assumed that the length-width ratio of the
plate is large, so that conditions of plane strain will prevail sway from
the ends of the long side. It follows from these sssumptions that the behavior
of the structure may bde considered to be that of a beam, and the problem may
be formulated in two-dimensional plane strain.

The depih of burial of (he underground structure is in the shallow
range with the seximum depth of interest on the order of twice the spsn
length. it is in this range of depths that the effect of arching in the soil
is expected to be o manimum. Although the sttenustion of free-field air-
overpressure by the soi) may be significant in this tongo.‘ onty the
redistribution of pressuiz ceused by soil-structure intersction wil) be
considered in determining the pressure trensmitted to the structure.

An importent effect of the s0il on the nature of the pressure weve,
particularly for dynamic studins, leads to an incresse in the rise time of
the pressura pulsc ot the wave propegates dowmwaré (hrough the soil s“. This

‘ncreasad rise time tends tO reduce dynamic effects.

1.7 Swummery of Prsvlw‘ Eri

Mne of the earliest studies of the 30! l-struciwre interaction

problem to sppear in the litersture was Terzaghi's 'Trap Door'' cworlmt-n




With & simple device he showed that a small downward movement of an under-

ground structure results in a large decvease in the intensity of pressure

applied to the structure. This type of behavior is of interest for the design

of tunnel liners or large underground conduits as well as the design of

underground blast-resistant structures.

Several methods have been used to evaiuate the effect of soil-

structure interaction on underground structures subjected to air-blast load-

ings. One study was made by considering the soil to be an ideal elastic

material.e Spherical and cylindrical models were treated by cbnsidering »

uni formly distributed, radially symmetric pressure, and using equations of

equilibrium and compatibility from the theory cf elasticity. The method was

applied to shapes of structures other than spherical by considering the

compressibility of the structure, thet is, the change in volume due to

externally applied loads.

Another approach considered only the Rankine passive sarth pressure
9

developed by the soil as a flexible two-hinged arch moved into the soil mass.

The problem was reduced to a single-degree-of-freedom system consisting o’ a

lumped mass restrained by a weightless spring with the configuration being

defined by the radial deflection of the arch at the quarter-point ~f the arch

rib. For a1l arches considered, the response was found to occur 7 the plastic,

or yielded, part of the assumed elast’'c-~'astic resistance diagram for the

soil.

A more realistic approach utilizing the classical Rankine esarth

pressure theory has been made by considering both the actlve and passive states

of stress in tha s0i] and the different s0il masses entering into the response

as the arch dof!ccu.3 In this case, the structure consisted of four rigid,




massless bars connectad by rotation resisting springs. !n determining the ; _?" |
dynanic response of the two-degree-of-freedom system, the masses were
assumed to be concentrated at the bar connections. The blast overpressure

acting on the ground surface of the soil failure wedge was taken into

account in determining the total resistance of the soil mass.

A dynamic analysis based on the formation of vertical slip planes ‘
in the soil between the structure and the ground surface and a uniform
distribution of vertical stress on horizontal sections has been made for " .
pseudo-steady state air overpressure.‘0 In this analysis the failure mass
of soil is considered to undergo a rigid body motion along with the
structure. in this theory no account is taken of the propagation of the i

pressure wave through the soil or the associated dynamic s0il-structure

interaction.

&

[ O VO

LN el A i




1.3 p.l (ion
A list of primary symbols used in the first six chapters i3
summarized for convenience in the following.
ax.ay = components of acceieration in the x and y directions
= depth of burial of structure
K = ratio of horizontal to vertical stress at a point in the soil
k = s0il cohesion in units of stress
L = span length of structure
p_ = intensity of overpressure at the ground surface
q =« intensity of pressure loading on the structure
r,6 = polar coordinates
v_,v. = components of velocity in the x and y directions
X,Y = intensities of body force in the x and y direction
X,y = rectangular coordina;es

a = direction of the velocity vector measured counterclockwise
from the positive x-axis in rectangular coordinates

@ = direction of the velocity vector measured counterclockwise
from the positive radius vector in polar coordinates

B = direction of the maximum principal stress mesasured counter-
clockw:se from the positive x-axis In rectangular coordinates

B = direction of the maximum princips! stress measursd counter-
clockwise from the positive radius vector in polar coordinates

v = ™4 . %2, Physically, the inclination of possible slip
planes to the direction o princina’ alicss

€ .6 = components of strain in the x and y directions
¢ ,¢_ = components of strain-rate in the x and y directions

Y = shear streoin

Y_. = shear strain rete




rectangular coordinates on the characteristic plane
density of the soil mass per unit volume

components of stress in the x and y directions
shear stress

principal stress

normal stress and shear stress on failure plane
combined stress and velocity variables

angle of internal friction of the soil

angle between the x-axis and the charecteristic curve




2. DYNAMIC THEORY OF GRANULAR MEDIA

2.1 Assumptions

The theory of the dynamics of granular media to be presented in
this and the next two chapters follows that of G. A. Genievll. In applying
this theory to the problem of soil dynamics, it is assumed that the soil will
benave as a continunus and homogeneous granular medium having a shearing
resistance consisting of the cohesion, which is assumed to be a constant
independent of the stres; state at a point, and internal friction, which is
assumed to be a linear function of the mean normal stress.

It has been shown by experiment| that the resistance to slip along

a plane through a typical point in the medium is given by
ltnl = o tang+k (2.1.1)

where 0T, ® the normal and tangential components of the stress vector
acting at the point,
9 = the sngle of internal friction,

k = the Jchesion.

Planes in the soll medium on which the relation

max [ITI - (o, tan g + k)] -0 (2.12)

is satisfied are called slip planes. At any point in & region of slip there
are two planes along which slip may occur. The one along which siips actuslly
occur is called the "active slip plane."

When equilibrium is destroyed, s velocity field resuiting from the

relative motion of the soll particles Is sct up in the soil. It is sssumed




that this velocity field will satisfy the eauation of continuity from the
theory of continuous media. It is further assumed that when flow occurs
the stress components may be expressed in terms of the strain rates.

As stated in Chapter |, the two-dimensional plane problem will

be considered in which the stress components O 0 and the velocity

y' Txy
components v and vy are expressed as functions of the space variables x and
y and the time t. Since relatively large displacements are expected, the
problem has been formulated in Eulerian coordinates so that the motion is
expressed in terms of the components of the velocity field rather than the
displacements of the particles. After a complete velocity solution has been

obtained, the particle displacements may be found by direct integration.

2.2 Equations of Motion

Figure 2.1 shows an infinitesimal element of the soi! medium which

is in a state ¢f flow and which is acted upon by the direct stresses 9% and

3y and the shear stress 1xy' The sign convention adopted here tskes com-

pressive stresses positive, 30 that the inward normal stress acting on a
surface of the element shown in Fig. 2.1 is positive if the inward normsl to
the surface is in the direction of the negative coordinate axis. Positive
shearing stress on a surface acts in the negative direction of one cooru nate
axis whan the inward normal to the surface acts in the negative directica
of the other coordinate axis. This sign coivaalion s opposite to the usua!
convention in the theory of elasticity; however, it is convenient since
the norms! stresses usually encountered in solls ore compressions.

If X ond ¥ are the intensities of the body force and p is the mass
per unit volume, the squation of motion in the xn-direction of the element in

Flg. 2.1 is:




do o
X x
o Xdx dy - (ux+&— dx) dy +o, dy - (1xy+wxdy) dx

+1xydx-pdxdyax

where L is the acceleration of the element in the x~direction. This equation

may be written as

do o
1 X
Xeo D

Similarly, the equation of motion in the y~direction yields

x do
| .
- - + - Y 3
IR Yy (@22
In Eulerian coordinates the acceleration terms a‘ and 'y in Eqs. (2.2.1) and

(2.2.2) are expressed as fqnctlons of the velocity camponents, A and vv by

8\'! Bvl avx
ST + vlg--tvyg;— {2.2.3)

v dv

.v';l"-sx”v#

Using thete sxpressions, the equetions of equilidrium become

As stoted earliar, slip will occur when the stress components

satisfy the relation




max | Irnl - (a"tanw-rk)l-ﬁ

The points on a Mohr stress diagram which satisfy this relation form an
envelope of possibie states of stress at failure. One such stress state
is shown on the Coulomb-Mohr diagram in Fig. 2.2. The radius of a Mohr
circle for a state of stress satisfying the failure criterion is

(al - 52) = 1‘““ where o, and °2 are the maximum and minimum principal
stresses. The principal stresses 9 and %9 and 'mx. are related to

xy-components of stress by

| | 2 2
01'3(°x+°y)+'f\jax-°y) *“xy

2

°z'%(°x+°y) '%ﬁ’n'dy)z"'xy

]

*aan. " 3 0, - 0 * 3 \[(sx SLEYEN (2.3.9)

Sapressions for o, and v are obtained from Fig. 2.2 to be

EY XORTSEE RS LR RV A R R

A -% Jr(cll - o‘)i + 4 v“T' cos. @ (2.3.9)

Substituting Equ. (2.3.4) and (2.3.9) into the Coulomb faliure

criterion, Eq. (2.1.1), one obtaing:

2 2 .
(o‘ . a) < 4 Yy * “"1. (u‘l to ¢ 2k cot ')l {(2.3.¢

10




It may be seen from Fig. 2.2 that the two possible s1ip planes are inclined
at angles 1y to the direction of the maxim:» principal stress, where the

angle 7 is given by

-2.2
r*3°32 (2.2.7)

The sngle between the s)ip planes and the x-axis is determined by
introducing the angle P which is the angle between the direction of maximum
principal stress and the x-axis. Then the slip planes will Jorm st angles

B ¢t 7 to the x-axis, as is shown in Fig. 2.3.

2.4 Equetion of Continuity
According to the theory of continuous medis, the velocity components

and the density are related by the principle of conservetion of mass in the

following way:

Aov)

%0-—:—-#2-(%:-2-»0

If the madium is incampressible, the equstion of continulty

;—‘-0?-0

2.5 The Ki ic Relet!
|

The kinematic relstions are expressions which relate the stressee

to the velocity field. The two such relations to be contidered here s°e

boased on the following sssumptions:
1. The shear strain rete is token to be o meximm along the |

direction of active slip, (2.5.1).
1]




2. Tne velocity vector is restricted to coincide with the
directions of active slip, (2.5.2).

The first of these relations considers the soil to be essentially
a truly continuous medium while the second attempts to account for the
behavior of a medium consisting of a system of particles whose dimensions
are small bhut not insignificant.

The theories resulting from each of these relations will he
referred to as the continuum theory and, as Geniev calls it, the macro-

structural theory, respectively.

2.5.1 Kinematic Reistion for the Continuum Theory. Figure 2.4

. Y. .
shows the Mohr circle of the strain rates cl. cy. and 3 7“ which are

related to the velocity components by

and .

R e e
7’"'3(51’37-‘)

The direction of the manimum shear strain rate with respect to the

xeaxis is given by the angle X, which from Fig. 2.4 is




Since the maximum shear strain rate occurs atong a slip line in

this theory, the angle X is:
Xu(pzty)

In Fig. 2.5, this relationship is shown ciearly. Then from Fig. 2.4

dv ov

LoX
tan 2(B t y) -§x——§

= %

From the Mohr circle of streises shown in Fig. 2.5,

T
tan 29 = 2L (2.5.3)
x " %y

Comdining Eqs. (2.5.2) end (2.5.3), the hinematic relation betwesn the stress

snd velocity fields is odtained for the continuua theory.

av v v

T ( -

LA,
FLLEE

g -0
x Y

This may 8130 Le written as foliows:

{2.5.9)




2.5.2 Kinemstic Relation for the Macro-Structural Theory. The

second kinematic relation is based on the assumption that the velocity vector
coincides with the direction of active slip. This assumption follows by
considering a state of motion in which the 20il grains are noviﬁg in tubes
or layers of flow formed by adjacent stream lines as shown in Fig. 2.7. The
smallest spocing of two stream lines is given by the dimensions of a single
particle, and the velocity of flow in any vayer varies with the width of that
layer. |f relative motion occurs in the s0i: medium, siip will take plﬂco
along the boundaries of the layers of flow, that is, aiong the stresw lines.
Since the tengent to a stream line rapresents the direction of the velocity
vector, the velocity vector may be assumed to coincide with the direction
of lines of active slip.

In Fig. 2.7 a field of active slip lines and the direction of the
velocity vector at o typical point is shown,

1f G is the angle between the direction of the velocity and the
x-anis, Fig. 2.7 gives

v
tena» ;X (2.5.6)
3

Nere, the direction of the slip line st the point is also given by the angle G,

GePry (2..7

ton (B2 y) ool (2.5.9
E

tn Bq. (2.5.3), the stress components sre releted to the angic 2§ frem the

Nohe circle.




tan 2(B ¢t y) e—Rtan(Bty

l-tanz(b:r) |-

tan 2(8 2 v) -% (2.5.10)

an expression for tan 2P may be obtained.

‘TR

(2.5.1)

i
y Ten 3r

Comiining £qs. (2.5.11) and (2.5.3), ond noting thet one ohteins an quetion

which relates the straas ond velocity flelds




Thus, the five unknown functions o , G ., T .V and v_ are given
x xy x y
by the five equations, (2.2.9), (2.2.6), (2.3.6), (2.3.8) or (2.3.9), and
(2.5.5) or (2.5 120.
1t may be shown that the kinematic relations coincide ir any
region where the streamlines are parallel and the flow is steady. In this

case the velocity vector does not vary with time or position, that is,

dv-%dt*%dx*%dy-o.

where dx and dy refer to 3 segment of streamliine.

Since the flow is steady, s 0. Dividing the above equation by dt, one
Y 9

obtairs the following expression:

5'.*?,','0 (2.5.13)

The velocity v may be exprested in terms of v mné vy by:
(2.5.164)

Differentiating to. (2.5.14) witt raspect to x, en empresyion tor E i

obtained. Similarly g is fowrd,




Substituting Eqs. {2.5.15) into (2.5.33) and solving the resulting

v v
quadratic expressions for ;1 and ;5, it turns cut that:

x Y

av
x

N avx
- ng-iv (2.5.16)

L3

™

Taus, it may be seen that the two kinematic relations given by Eqs. {2.5.%

and {2.5.12) coincide in any region of steady flow with parallel stream lines.




TRAHSFORMAT1ON GF EQUATIONS BY THE METHOD OF CHARACTERISTICS

3.

Meihod of Solution

3.

1

Since the five equations relating the fiva unknowns form n system

of first order, quasi-linear partial differential equations of the hyperbolic

type, it is possible to formulate a procedure for the solution of these

equations by the method of characteristics)l',z"a. in this formulation, the

system of five equations in five unknowr~ is replaced by the differential

equations of the characteristics and the differential equations called

‘icharacteristic equations,' to be satisfied along the characte istics. The

solution obtained by integrating the cha.acteristic equations 2long the

characteristics is equ valent to the solution of the original system, but is

generally more converient to obtain since the characterisiic differential

equations and the differential equaticns of the characteristics are ordinary

rather than partial as in the original problem.

The method will be develioped for the quasi-static case of an
a'ylat are

In this case the termy avx/at and

incompressible soil medium

neglected, and p is taken as constant, which resulty in the five equations:

3 & Qv v
X » x X
i IR RN T @10

L]
O f--

v

v

n, % >,
(#»}#) -yla:l-vv_, :;Y‘ (3.1.2)

2 2 2 2
)+ 4 Yy " sin” @ (c‘ + o, + 2k cot §) {3.1.))

oW
;‘.*a—yl-o (3‘.‘)




ov av
&‘-i 3—-) 15;- tan @

4—; (xx 3_) tan ¢

V

) Y vx
-(_!-_)gt.n¢
T v v
2°xy - X y
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The last equation, (3.1.5) or (3.1.6), is taken depending on which kinematic

relation is used.

3.2 Trensformation of Variables

It is convenient to define four new unknowns in terms of the
original five, 10 that the slgebraic equation of the failure criterion (3.1.3),
is sutomatically satisfied. This wiil reduce the original system of five
equations to four equations in the four new unknowns.

The princips! stresses e, and o, may be expressed in tearas of the

stress components 9, uy. and 1“. Fram the Mohr circle of stresses, Fig. 2.5
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o * 3, * 9 + o, (3.2.2)

Taking the square root of both sides of Eq. (3.1.3) and using Eqs. (3.2.1)
and (3.2.2), one obtains the equation of the failure criterion in terms of
the principal stresses:

g, = 0

| 2
o‘+02 Y - 2k cot ®

The stress compunents % oy. and ‘l’xy are given by:

! (o, + 02) +-% (c' - oz) cos 28

! (o‘ +0,) --i (u' - 6,) cos 2
! (0, - v)) sin 28

Using Eq. (3.2.3), these equations become:

oo (! + sing cos 2P) - k cot ¢
po (1 - sin ¢ cos 2B) « k co*

po {sin 9 sin 29)




On the Coulomb-Mohr diagram, po represents ihe distance from tha intercept of
the failure envelope and the normal stress axis to thz center of the Mohr
circle as shown in Fig. 2.2.

The velocity components v and vy may be expressed as:
vemvcosa

v = v sinQ
Yy

a = angle between the x-axis and the velocity vector v (Fig. 2.6).

3.3 Characteristics of the Continuum Theory

Using Eqs. (3.2.4), (3.2.5), (3.2.6), (3.2.7) ond (3.2.8), the
original equations with the kinematic relation of the continuum theory may

be expressed in terms of the new unknowns o, ff, %, and v.

gcos CIR ] *%eln B+v ¢+ 2 mo[ cos (B*r)*gsln (aor)]+

-

F3
T [? cos (B -v) ¢ g sin (B - r)] + -‘-;'f-; «0  (33.1)

%cu(ﬁ-r) *glin B-v -2 ‘ana[scﬂ(ﬂ-r)ﬁgun (9-?)]*

2
.-‘-:T-;{gw;(por)4%“0(9*7)]05‘1‘-0 (3.3.2)




vtan[a- (Btr)][§ cos (B *y) +%%sin (ﬁir)]-

[% cos (B %) +%§ sin {p r)} =0 (3.3.3)

vco:[a-(ﬁ!r)][gsin (ﬁtr)-%:-cos (Slr)]'*

[%sin(ﬁ:r)-g—;ccs(btr)]'o

AwXgsin(B-y)-Ycos (P-7Y)

BeXsin{P+y) +Ycos (B+y)

The first two equationy of this set represent the equations of
equilibrivws in the directions perpendicular to the slip lines. Eqs. (3.3.3)
and (3.3.4) enpress the conditions that the normal strain rates venish in
the directions along and perpendicular to the slip lines. It is now nvesy to
see that the set (3.3.1), (3.3.2) is equivalent to the set (3.1.1), (3.1.2).
Moreover, (3.3.4) ond (3.3.5) teken together guarantee that the volumetric
strain cate is zero (%he center of the circle in Fig. (24) is at the origi ).
1a addition, the normal strain rate of xero on & stip line then implies o
moximm shear strain rate on this line. The equirai~nce ~ith the origine:
set for the first kinemstic condition is now apparent.

The characteristics of Eqs. (3.3.1) to (3.32.4) may be defined a¢
those curves y = y(x) across which it is possible for the derivatives of the
unknown functions o, B, @, and v to exhibit finite discontinvities while the

. is
functions themselves remain r.cnumousu' .




Along the curve y = y(x), the unknowns satisfy the foilowing

differential relations:

do-%‘i—dx+§dy ; dB-%dx+§dy R

da-%dx+%3dy ; dv-gdx+%\-y'-dy

Equations (3.3.1) to (3.3.4) and (3.3.5) are a system of eight
slgebra:c equations in the cight unknown derivatices oi o, B, @, and v with
respect to x and y. Eliminating all derivatives with respect to x from
these equations, the following equations are obtained involving oniy derivatives

with respect to y:

wdnsin{P+y) -dycos (B+y)
=dngin (B -y) - dy cos (B -y)
20 ten @ o)

-0 ten @ .2
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X a
cos @ |

v tan [cx - (B2 r)] [dx sin (B2 y) ~ dy cos (B ¢ f)]

v cot [a -(p* r)] [dx cos (B ty) +dy sin (B 2 ]’)]

O[dx sin (B ty) - dy cos (B 2 r)]

[dx cos (B 2y} + dy sin (B¢ r)]

2
cos (B + 1) do + 20 tan @ cos (B +7) ﬁﬁ*’z%’—;ws (B - r)daa

+ A dx
cos @

e
cos (B - 7) do - 20 tan @ cos (B - ¥) dﬂ--c%;—;cos {8 +yv)da

]
cos @

+ dn

cos (B ty) vun[a- (bsr)]&-dv}

sin (B 2 ¥) vcol[ﬂ- (bir)]m0dv}

If the determinant of the matrix of coefficients in Eq. (3.3.68) 1.
not zero, the derivatives of the unknawms aay be determined uniquely slong
the curve v = yix). Mowever, if the slope %i of tiw carve y = y{x) Is such
that this determinent does vanish, then the derivatives of the unknown
functions along the curve are ~ot uniquely determined, and the curve is celled
a “charscteristic.*

The charscteristics may be obtained by setting the determinant 0
of the coefficients in Eq. (3.3.6) equsl to 2ero.
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b,

b,

(3.3.9)

Equating the first of these determinants to zero, leads to the first system

of characteristics.

b
H. 0 or 40 tan ¢ . - 0
b

2

This gives

‘-3 «ten (B +y) (3.2.10)

5{ « tan (B - y) (3.3.1)

where v is the angle between the siip planes snd the direction of grestest
principal stress, see Figs. (2.2) and (2.3).

These are the characteristics of the stress field, since they are
o consequence of the stress equation ¢!, Since & systeam of two reo!
characteristic directions is cbtained, the original equations have been shawn
to de hyperbolic. The stress field cheracteristics are inclined to the
n-axiy at angles (B ¢ y), that is, at the same angles as the lines of slip.
Mence, the ltines of slip will coincide with the stress field characteristics

on the ny-plane.




Equating the second of the determinants in iq. (3.3.9) to zero leads

to the second system of characteristics:

g{ = tan (B ty) (3.3.12)

sf = -cot (B ty) (3.3.13)

These are the characteristics of the velocity field. The angle
(B + 1) or (B - v) is used according to whether the active slip line makes
an angle of (B + y) or (3 -~ v) to the x-axis. Thus, one of the velocity field
chraracteristics coincides with the active slip line and the other iy
orthogonal to it as is shown in Fig. J.1.

The characteristics, or lines along which the derivatives of the
unknown fynctiony may de discontinuous, have been obtained by setting the
determinant of the coefficieats in Eq. (3.3.6) equal to terc. Nowever, for
any solution to erist at oll for the derivatives, the squatiasns must not se
inconsistent, that is, the determinant obtained by replacing any column of
the matrin of coefficients on the left-hand si1de by the nonhomogeneous part
of the equations must stso varish.

Replacing & column of coefficients on the left-hand side by the
column on the right-hsnd side of Eq. (J.3.8) and retting thiy determinant
tqual to zero, yields the relat:on wnich must be satisfied along the charac-
teristics. As before the relstions decouple into stress field end velocity

{ield ecuations.




Replacing the third column on the left of Eq. (3.3.6) by the column

on the right and setting the determinant equal to zero leads to:

5 -0 (3.3.14)

for the velocity fieid.

Evaluating this determinant yields:

along -2 - tar. (B2y);

v tan [0 - (B r)] da - dv = 0 (3.3.19)

along %i = -cot {(Bty) )

v cot [0 - (d 2 r)] 9+ dv =0 (3.3.:6)

The characteristic equations of the stresy field are obtained

from the following determinent:

' . K| <y 0 :
i
i '2 K: < 0 -
-0 3.0
} ) Xy ¢ N
! 0 L A % .

Since the function @ has been delerained from the velocity field, the
coefficients < ond < times the derivatives of G may be treated 33 known

quantities.

Io‘ 'I - g
-0 (3.3.18) .
€2 gn .

"z % -
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This yields:

along %}‘ = tan (p +7);

aleng %ﬁ = tan (B - 1),

Using £qs. (2.3.7) and simplifying:

2

2 .
+ b mwe—— cm—
; do + 20 tan p df " 3

cos(ﬂ+r)' LA, vé (
cos® cos (B +y) ]

2

v (1) +
x -aa-zo uno“'cug [T ol § « {3.3.2))
tos (B - 1) ] Y a

'couo*cosﬂ-ﬂ( 2

where (?; and (5 are evaluated by substituting either s-} = tan (B +v)
i F

or -31. = tan (P - v) into the last two equations of the system (1.1.8).

The basic equations of the 30.) medium with the first kinematic
assumption have been transformed into a set of charecteristics and & set of
ordinary differential equations to de integrated along each of the character-

istics.

3.4 Characteristics of the Macro-Structurs! Tiece

According to the second kinemgtic relation, the velouity vector is
directed along the sctive slip tine (see €q. 2.5.7). From Eqs. (J.2.7) and
(2.2.8) the velocity components v ond v' are given a3 functions of f and v:

v‘-v(ol(ﬂir)

(3.4.1)
v'-vlin ey

r ]




Using these relations in Eq. (3.1.6) satisfies the kinematic
relation of the macro-structural theory identicaily. As pointed out earlier,
the transformation of variables (3.2.4), (3.2.5), and (3.2.6) will satisfy
Eq. (3.1.3), the failure criterion, identically as well. Substituting
€q. (3.4.1) into the equation of continuity, (3.1.4) provides the equation
relating v and B. Using this, along with Eqs. (3.1.1) and (3.1.2) transformed
to the new variables o and B, one obtains the basic equations of thc macro-

structural theory.
¢ T
cos (B +v) ’Yy"" B +y) +

+ 2 tang{?—;_cos (B+y) + g: cos (a-r)}'b?;[sin 6 +vy) *gz sin (D-r)]}¢

(3.4.2)

gcos -7 0% sin (B -y) -
- 0 unglg[cos B-y9) ‘3 <o (p.r)]oz{gm 8-y ’tl . (D‘T)]}‘
\

«0 (3.4.3)

v[g sin (B 2 y) -g cos (B¢ r)]- [*:T: cos (Bt y) 0% sin (8 ¢ r)]-o (3.4.4)

‘..——!——

Jig sin v
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The characteristics of these equaticns are found in the same way
as in the continuum theory.
Consider the differential ralations along a curve y = y(x) in the

xy-plane,

dv = dn + %% dy

Using these relations to eliminate the derivatives with respect to
(3.4.2), (3.4.3) and (3.4.4), one obtains the following equations:

-

$
1%

dr sin (P +y) - dy cos (B + v)
dn sin (B - v) - dy cos (B - v)
0 tang (2 ¢ tz 02)

-2 tan @ (02 +* t2 0|)

v {dn cos (B tyY) + ¢y sin (P r)J

ax sin (B 2y) - dy cos (B ¢ y) (3.4.7)

-

cos (B ¢+y) do + 20 unfcos(boy)ogzcos(a-r) @ ¢

A dn
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K, = cos (B -v) do - 20 tan o !—cos ®B-v) + gz cos (B + r)] dh +
i

" 8 dx
cos o

K3 = v sin(Bty) dB+cos (Bty) dv

From Eq (3.4.€),

g-; - ﬁ'—-}:-’-g (3.4.9)

To obtain the characteristics of the stress field, the determinant

in the denominatar of Eqs. (3.4.8) is set equs! to zero. This gives:
2 2 2
Zatanq;'-?a‘cz+( (l‘+02)]'°

Using Eqs. (3.4.7), this sim.iifles to:

.8

s 2
i‘f'“” sio o) smgg:gig -3 13.4.10)

(V+ " sing) os 20+ (47 ¢ l\.ﬂﬁ)

This equation gives the slope of the characteristic curve. (f X ix the angle

between tiie x-axis and the characteristic curve at any point, then

)7
tan X = dn




Let ; be the angle between the maximum principal stress direction and the
tangent to the characteristic curve. Then,

tan X - tan B

ten ¥ = tan (X - ) = TR X tan B

Substituting Eq. (3.4.10) into (3.4.11) yields:

=z
wany = ¢ \jJ-J;-ﬂi tan v
1+ ¢

et tan! Wiods tan (& - %)] (3.4.13)

1+ ¢

The relation between the slip line direction and the charactzristics is

shown in Fig. 3.2. Equation (3.4.10) may also be written in the fora

%{ “«tan (Bt ) (3.4.14)

v

1t is of interest to consider the effect of the factor ¢ = in

J23 3in ®
£qs. (3.4.2) 10 (3.4.4) for various values of §. If | « 0, this implies
that v = 0. This is the static case for which

teny =2 tany, or v ety

and the stress tizld coincides with the one from the cc~<inuum theory.

1, in & dynamic case § =},

v=Jig sin ®

tana=0, or v =0

kT




for this casz the characteristic curves coincide with the direction of maximum
principal stress. When the veincity exceeds the critica! speed JEE-;T;-;
the equaticns bacome elliptic, and the method of characteristics does not
apply. The existence of a critical speed is an unaxpected consequence of the
theor , since hyperbolic equations are expected in dynamic problems. However,
for the quasi-static case, the difficulty of a critical speed does not arise.
The differential relations to he satisfiec along the characteristics
of the stress field are obtained by settirg the foliowing determinant equal

to zero:

{3.4.15)

trpanving *his deierminant and using Eqs. (3.4.7) and (3.4.14), one obtains

the characteristic equations of the stress field.

Along %f = tan (B +7)

dx (cu + sg

c_w)do + 20 tan @ [cu - .“»'l <. ? !2 (c_" - S‘ c")] ap
‘cosw-bﬂ- A+S b :
. e

<ot 9

(3.4 16)

Along %f = tan (B - 7)

dx . (c_v + ?; cv)dc - 26 tan g [‘—v - sl ot gz (cv - Sl c_v)] "
cos (B - 1) T A+ S

B S (3.4.17)
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The characteristics of the velocity field are obtained by setting

<y of Eq. (3.4.9) equal to zerc. This gives:

Lwtan B2y {3.4.19)

Here the + or - 3ign is used depending on which slip line family
from the stress ficld is active.

Equation (3.4.19) shows that the characteristics of tne velocity
field coincide with the families of slip lines. This is to be expectad from
the basic ussumption of the macro-structural theory which required that the
velocity vector at any point coincides with the direction ot the slip line
at that point.

The differential equations to be satisfied along the velocity

characteriatics are obtaingd by setting the numerator of Eq. (3.4.9) to zero.

Ky - by § -0 (3.4.20)

Using Eqi. (3.4.7), this becomes:

Aleng -3-} - ton (B +7)

do + 2u tean g l! + ‘3 (c“l - Su‘ cos Q)] ®» +v v
c9s tr ‘/“. ) (’.‘-2')

da

o " -

‘J -
Alonyg o = ten ®-v

2 \
dn do - 20 tan g E.+ t (‘ui + 8“2 cos ,Zl!p + v dv

-Cm ‘[m’ 9 (3.4.22)




¢ . = 03 B - X g .sin8+

ul  cos §ﬁ+r; ! ul  cos 384»7"
cos ib+rt

92" s (B -7

3.5 Characteristics in the Static Theory

it will be useful to present the development of the method of

characteristics for the equations governing the statics of voil Mdhn"s.

These equations are:
X >
| » x
Lol o

o do
\ x
U e AR
2 2 Y 2
(al. a)) +41“ = gin a(ol4uy*2k cot @)

Transforming to the new varisbies ¢ and B, the last of £qs. (3.5.1) is

satisfied identicoliy and the following two equations are cbtained:

gcm (B + 1) og sin (B +y) +

+ 20 uno[gml B+ ’glln (B’T)]*

gcos(a-r)+§sin(o-r)-

- 2 lonqv[g cos (B - v} 4% sin (p.,)]§__!__ -0 13.8.3)

cos ¢

k1




A=X sin (B-y) - Ycos (B-7)

BeXsin{(B+y) +Ycos (B+7y)

Using the same procedure as in Section 3.3, the characteristics

of these equations are:

%{ = tan (B +7); %ﬁ - tan (B - v} (3.5.4)

and the differential equations to be satisfied along the characteristics are:

do + 20 tan @ dB = O
(3.5.9)

do - 20 tan g dB = O

Equations (3.5.5) may be integrated to yield:

E-g;—'lno-ﬂﬂcﬂli(“(u)

$2§-! Ing 4+ B = const = y(z)

Nere, » function of o, minus B it & constant on membars of one family of
charecteristics, and & function of o, plus B is a constent on mambers of

the other fomily. Equations (3.5.6) may be solved Tor B and the function of

£32 in o -% (tlw) + nln)]

B o3 l-tu) +n(n)

As in the theory of plasticity, specia) cases arise when, in & particular

region ceing considered, { and n are constants, | slong is & constant, and

n alone is @ constant.|s""'7




when both ¢ and n are constant functions in a region, Eqs. (3.5.7)
show that both o and £ are also constants throughout the region. When this
is the case, both familiss of charzcteristics are straight lines and the
region is called a '‘region of constant sute“]s'n. o

When eithsr § alone or n along is a constant, one of the
characteristics (3.5.4) will form a fan of straight lines. |f the fan is

certered, that is, if the straight line characteristics intersect at a point,

the region is cailed a '"region of radial shelr“'.

3.6 Transformation of Characteristics to Polar Coordinates

for later work in polar coordinates it will be convenient to replace
¢t and B b. similar angles & and B measured from the positive direction of the
radius vector r :nd the directions of the velocity vector and of the maximum
princinal stress, respectively. The angle 8 is defined as the countercliociwise
engle from the y-axis to the radius vector, as shown in Fig. (3.3). The

fo!'awing relations may be easily obtained from Fig. (3.2):

.|
Bep-.e-3

{3.6.1)

6-0-90%5

Po'ar crordinates will be used later when in a porticular problem
the inuuin“ family of slip lings concisty of a centered fon of straight line
character stics. In this case the angle B in polar coordinates ras a

constant value egual to:

That is to say, slip sctually occurs slong the other 1et of slip lines.

7




B=+y for %- tan (B + 1) active

B=-y for %-tan (B - v) active

In polar coordinates the velocity field characteristics given by
(3.3.12) and (3.3.12) become:

46 _ , cot g

dr r
46 , i tang
"ty

In transforming the equations to be satisfied along the charscteristics, B,
a, da and dv in Eqs. (3.3.15) and (3.3.16) must be determined from the

expressions (3.6.1) and (3.6.2). These give:

pefsoty

a-&*ﬁ-%—E
da-d&+¢o

dv » dv

where d6 may be obtained from (3.6.3).

Using (3.6.4) n (3.3.15) and (3.3.16) yields:

tan (3 % 2y) [d&--‘%—‘dr

r

cot (& + 2p) {d.l'tmdr]ﬁ‘:—'.o

where the - or + sign is taken depending whether the sctive slip lines are

inclines at on angle (B ¢ y) or (B - v) to the m-axis.

a8




The characteristics in polar coordinates for the second kinematic
assumption may be easily obtained by transforming the basic velocity £q. (3.4.4)
to polar cocrdinates and then finding the characteristics from the transformed
equation.

Transforming (3.4.4) to the polar coordinates of Fig. 3.2 yields:

} v .
%‘;’slngzgﬁr—!h;mq-o (3.6.6)

Again, the sign in the second term is selected according to wnether the

active slip lines are inclined at (B + 7} or (B - v) to the x-axis.

Since characteristics are lines along which g% or g% may be

discontinuous, and along which the relation

dv = %} dr + g ™ {3.6.7)

hoids, the system (3.6.6) and (3.6.7) may be solved in the usual way to yield

the differential equations of the characteristics.

de cot @
:: -2 ' (3.6-.)

Integrating (3.6.8) glves the equotion of the velocity field

characteristics and active family of slip lines.

cer o 6 teno (3.6.9)

The differential equation to be satisfied alc-.) the charscteristics

(3.6.9) is:
Lolwnow (3.8.10)

or upon integration:

vev ot ®tang
[ ]

»




4. NUMERICAL SOLUTION OF EQUATIONS

4.1 Finite Difference Method of Solution

In general, the solution of the differential equations to be satis-

fied along the characteristics can not be obtained analytically. However, a
solutior can be obtained numerically by transforming the equations to charac-
teristic coordinates, and then converting the cdiffrrential equations into
difference equations along the characteristics.

The region in which the solution is to be obtained is divided into
a network by the uz- characteristic coordinatas as shown in Fig. 4.1. The
solution proceeds in a step-by-step fashion by obtaining the values of the
unknowrs at the point 5k.l after the values of the preceding polnts.bk.‘_|

and bk-l ! have been obtained. At the start of the computations, points

°k,z-| and bk-l.l correspond to points on the initial curve for which
initial values are prescribad.

Let u(x,y) be the coordinate measured along one family of cherac-
teristics and 2{x,y) the coordinate along the other family. In the ux-

plane

du =» g& én + g& oy

dz -g‘l*g‘)

Solving for dx and dy

wod (@) -w(@)]
weh boolg]ralp]] w1




Since x = xfu,z) and y = y{u,z)

dx-%du-&%dx

dy a%du +§§- dz

Equations (4.1.2) and (4.1.3) yield the fol'lowing transformation relations.

gooofs §eod

1f for any function , f w f(u,z) , then:

TR

ofer-g

Darivatives with raspect to the charecteristic coordinates u,z are approni~

mated by the following finite-difference expressions:
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4.2 Equations in Finite-Difference Form

Along the characteristic u = u(x,y) = const.,

du-%“*%ayno (4.2.1)

if the velocity fiald characteristic given by (3.3.12) is namad the one along

which u = u(x,y) = const., Eq. (4.2.1) bacomes

du -g cos (B ty) *% sin{8tr)eo (4.2.2)

Similarly, slong 2 = z(x,y) = const., using £q. (.3.13)

dz-gnln(ltr) -gm(&‘:‘:r}

Using (4.1.4) in Eqs. (4.2.2) end (4.2.)) ylelds

u-gmtltﬂ-g se (B2y)

_ (6.2.9)
c:-g- slaf{pty) 0gm(atr)

L]




These are the characteristics of the velocity field in the uz-planc.
In a like manner, using (4.1.4), (4.1.5) and {4.2.4) in Eqs. (3.3.15)
and (3.3.16), ona obtains the aquations to be satisfied along the character-

istics in the form

o lo-wtal B -
vcot[h- h’r)J§+§ .0

Equations (4.2.4) and (4.2.8) mey be axpressed In finite-diffarence fore by making

u"e of the d!fference quotients (4.1.9).

[Yk.n"h.:-ﬂ m(l,‘,,,tr)O [‘k.l"ml-l] “.(.h‘_'lr)- 0

(4.2.6)
['h.n - "u-l.;_] sto (‘u-l.n' r)e [‘h.l ) 'ﬁ-l.lJ wi (B arr)

and

e ’ e e
tea [u.m Pt '] ( % I k.l-l) ®

r

. Eu-n.a _(“‘“”j(.“,-bu) .[:I*:-:Nd] -0

L]

The finite-differsnce form of the equations of the velecity flalé cheracter-
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The equations along the characteristics take the finite-diffarence form

tan (E“_‘ v ) E“ - Oy ge1 - cot (’u,a - ’u-l] ,( MW 'Lu:_;_); o

i, 8-1 VY, el

fywel,s

o iy 4 ) Ek" Ciirs + ten «iu.’.ﬁs.-_u)] of




5. PRESSURE LOADING "W BURIED STRUCTURES

5.1 Stress Field Soiution
The theory presented in the previous chapters will be applied to

the problem of determining the intensity of pressure ac.ing on & structure
buried in & granular soil when tha ground surface is subjected to an air-
induced ovec-pressurc 3nd the structure is on the verge of ccllapss. For
this case, the pressure #pplied to the structura corresponds to # megsure of
its uitimate strength.

The structure considersd is & piate having one side much longer
than the other 3o that the two-dimenslonal state of plane strain will prevail
at regions away from the ends of the long side. Taking the xv-planc perpendicu-~
‘lar to the long axis of the plate, the slip planes will form &5 s)ip 1ines o
the xy-planc,

The intensity of pressure, Py’ spplled to the gvound surfacs is
assuned to be uniformly distributed over a large area, and directed vertically.
Sinue there is no shearing stress at the grousd surface, *he vertical stress
in the soll at the surface is a principel struss equal to Py The structure
is assumed symmatrical, so by virtua of ryametry the vertical stress along
the axis of symmetry AB in Flg. .1 is alsu 8 priacipal stress.

ir general, as in the Theory of Plestizity, the sirses field equetions

can not be «pplied diractly to a specific problen o ubtain the required fallure

pressure. However, s solution s obtained by finding & proper stiwse fleld
for which thers existe a compatible velocity fleld setisfying all velocity
boundary conditions .,

The fomililas of stress charactecistice or slip tines have certain

geomatric propertias which fecilitete the construcilon of o streas fleld
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from given conditions at the boundary. These oroperties were first presented
by Hencky ' and Prandtl 19 for the Mises Theory of unrestricted plastic
flow. One of the most important of these geometric properties is that the
angle formed by the tangents of two slip lines of one family at the points
of intersection with a slip line of the other family is a constant no matter
what member of the other family is taken.

From Eq. (3.3.9), it is seen that the stress and velocity fields
may be considersd separately. Additional properties of the slip lines are
given by the relations derived for the static theory of Section 3.5 when the
quasi-static problem is considered in which inertia forces are not considered.

Since the intensity of gpplied over-pressure is 3 constant, a region
of constant state consisting of two families of straight slip tines forms at
the ground surface. Similarly, assuming & uniform pressure applied to the
structure, we have a region of constant state adjacent to the structure.

The horizontal principal stress in the soil at thc ground surface

is taken to be the maximum principal stress a3 a result of arching in the soil.

Ter zaghi L has verified this behavior experinentally. With the x-axis vertical,

the value of % in the constant state region at the surface 13 either tx/2. The
direction of maximur arincipal stress at the structure (s vertical so that
the angle 8 undergoes a total change of =/2 and is equal to zero in the constant
stu.¢ region adjecent to the structury

Figure 5.2 shows the network of charscteristics for the siress field
solution nf the quasi-stetic probeim. The strese field is divided into
four regions, the two ¢ nstant stste regions, COC' and U0J' and tha centered
fans OCD and 0C'D'. in symnetric~i problemy both fomilias of slip lines will

b active H . 3¢ that alung .he limiting sctive stip 1ine (D, dy/dx = tan(B-y)




and along C'D', dy/dx = tan(B4r). The u and » familles of characteristics are
given in region DOD' by the differential equations dy/dx = tan(dty). In this

regjion the angle B = const. = 0, since the direction of the maximum principal

stress coincides with the directicn of the x-axis. Then tiis equations of

the slip lines arz given by

y*exteny+e (u-family)

y = x tany +c, (2-fomily)

where ¢, and c, are arbitrary constants and the u-family is ective.
The characteristic for region COC' {B = const. = x/2) are abtained

in @ similar wav to be

y=xcoty¥ec, (u-fanmily)
(5.1.2)
y*-nxcoty+e, (2-family}

In region OCP it is convenient to supress the c;lurectcr!stlc nat
by a system of plane polar courdinates with 6 messured countarcliockwita as
shown in Fig. 5.2. Here, the direction of the uaximum principal stress is
given by the ang'e B which Is measurad with respect to the redius vectar
from point 0 taking countarciockmise positive. Since the redii frow point O
asre membars of the irsctive family of slip lines In reglon OCD, the angle [)
is constant in this region (cf. Eqa. 3.8.2). 'n pnlar coordinutes iiw

difierentiel equations of tha stress fleld cherscteristics in raglon 0CY are

ﬁ - . ﬂ{_! {u-family)

g L) {z-fomily)




They yield

. r'em(e-r)tan P

{u-family)

6 =6, (z-Family)

The u-family of active slip lines form a family of logarithmic spirals given
Ly the firs: of Eqs. (5.1.4).
The relations to be satisfied along the characteristics given in

Section 3.5 are

¢-B8= ¢ = const. on u-family

g+8 = n = const. on z~tamily

o +kcot?P -
I +sin? cos 28

T SQ%.Z Inl

‘s the constant state region D3D', doth & and n are constents. Thus, this region
transforms int> 8 tingle point on the tine ¢ = n on the tn-charactaristisz
plane shown in Fig. 5.3.

On the right-hand side of the axis of symmetry AE, the maximum
principal strass direction changes from 0 ta 90 degresx with respect to the
x-axis by # countarclockwise (positive) rotation, 30 the sagle B iv reglon
AGC Is + 272, On the left-hand side of AD, the o (imum princice) stiens
cirmction changes by @ clockwisze (negetive) rotetion of 90 dagress, so the
value of 3 in reglor AGC' 18 - x/2.  in genersl, the proper sigy of the
tngle 8 musi b used in determining the correct valuae of the ctrasi com~

ponents .




Regions AOC and AOC' asre shown in Fig. 5.3 as points on the gn-plane.

ol MR 3 5o vt

The centered fans 0CD and 0C'D' transform into the lines § = const. and y = cunst.
connecting the constant state reglons. Although the region COC' Is transformed
into two points on the characteristic piane, only one need be considered since
each point yields the same valuss of stress components.

The applied pressure Py required to develop the assumed stress
fie'd may now be determined. Using tha first of Eqs. (5.1.5) to determine
the value of ¢t in regions AGC and BOD In terms of the pressures Po and q,
it may be sesn from Fig. 5.2 and Fig. 5.3 that these valuss must be equal.
By equating the valuas of ‘MC and fgm the prassura Py Is obtained as &
function of the ultimate plate resislance gq.

in reagion AOC, g, " h, std 8 = /2. From the first of Eas. (5.1.9)

- +kecot?
taoc ° "aoc " Panc ” 53-}'! ‘"Ff—_—.rn-‘-—] -'; (5.1.8)

e

lnrcg!mm.c‘-qwe-o. Than
- injg ¢
‘aoc"m"m'ai'! [ﬁ-;k;ﬁ&!]-o (s.1.7)
smnm-gm

e \»[’_}_t_%;%_f] _—s “‘{i s ;] (s.1.9)

A h et ®

h\[:s_r.’-‘m . H’A'H] “gean® {s.1.9)




; x tan @
py = (a + k cot 0)[-}—5—}%%]‘ - k cot @ (5.1.10)

For P = 30°, k = 0 (ideal granular material)
| i x tan @
. qli=tin®
Po q[| + sin 0].

Po ® 2.03q

Expressing the soil cohesion k by the relation
ke qu
Eq. (5.1.10) becomes

Py ® q[(' + C cot P)F(9) - ¢ cot 0]

‘u'%

‘o) - {' ; .L %}l tan @

it should be noted that this solution corresponds to & particuler

depth of buris! depending on the span length L and the angle of interns)
friction of the soil ®. Eveluating the srbitrary constant LA in tha first of
fqs. (5.1.4), tha equation of the line €D is obtained

ragpo@-TePme (s.1.12)




The length OC is found by setting 6 = + Y

n
oc =00 e 2 tO"° (5.1.13)

from this the length CC' and the depth B may be found in terms of the span L.

X
' sLcotye 2° (5.1.18)
[t -Ztan® 1
H= L[i e 2 +-2- cotr] (5.1.18)
for @ = 30°
Then
cc: = p. 0L
and
A= 107

1t should be remembarad that the solution obtained here is valid for only one

depth if the span of the structure and P is given.

5.2 $olytion for Arbitrory Depthy

The solution for the strass field obtained in Section S.1 is dased
on the sssumption that the entire reglon bounded by the limiting s).p lines
CO and C'0* i3 in a state of plastic equitibriuwm. Using this essumption and
the stress field of Fig. 5.2 leads to & particular reatic of depth to spen
length for given soil properties. The velocity field corresponding to this

stress figld will be given later.

St




When the depth of burial is greater or less than the “criticai" depth
given by Eq. (5.1.15), the failure region bounded by the limiting slip lines
may contain zones which remain essentially in the elastic state. In these
elastic regions the distribution of stresses is unknown since the basic
equations of the analysis do not apply. However, if an elastic zone forms on
a boundary of the failure region, it may be possible to determine the total
pressure transmitted by the elastic region to the interior and to obtain a
solution without knowing the stress distribution completely. Such an approach

20,21

was used by Hill, Lee and Tupper for the probiem of a ductile material

ompressed between rigid plates.

Solutions for depths less than the 'critical" may be obtained by
assuming that regions COC' and DOD' are not fuily plastic and that the angle
B in the plastic regions 0CD and OC'D; undergoes a change of less than 90
degrees in going from 00 to OC. If Boc 3nd By are the values of 8 along OC
and 00 and Py and q are taken to be equal to o, on 0C and 00, then the failure

pressure p is given in terms of q by

- Chcot 0}

(s> ")

| +3in® cos 28 2ean 8. -0,.)
. pCiie o 00
Po " @ {(' * Cycot w)[I +3in0 co:ﬁiaoo] [ ]

The depth of durisl # will now be found In terms of b“ ond bw.

The equation of the curve (0 {3 given by




bid
rep = 00 e {0+ 7 - v - Pypltan ?

Since ro = - n/2 4 Bgc» Ea- (5.2.2) becomes

oc = oo e~ (Bog - Bp)tan @

L
oD = = -
2 s'nz + 8 ;
] T 0

D
. h
0A = OC sin(r + Boc - 2)

the depth H and the length CC' are given by

. i
sin(y + Boc * 2)

sir(y + SOD)

)+

2

Ll
H icot(r + BOD

e Poc - Bgplten ”} (5.2.4)

cer oL [T t0) -0y, - Agg)tan ”]

gsnnZT + BOO’ ¢

4

when ﬂOC " n/2 and 500 = 0, Eqs. (5.2.4) and (5.2.5) reduce to

N = (cot r+e g tan ’}

X
CC* «Lcotye 2%0°?

These are the same as Eqs. (5.1.14) and (5.1.18) given in Section S.1.

53




Equations (5.2.1) and (5.2.4) yield a range of failure pressures
for any particuiar depth cepending on the values of BOC and BOD used. The
proper valucs of &OC and BOD are the ones which yield the smallest failure
pressure at a given depth. Figure 5.4 shows the onfiguration of the failure
region for the critical depth and for three other cases in which the depth is
less than critical. These cases are for a cohesionless material with an
angle of internal friction ¥ equal to 30 degrees.

When the depth of burial is much greater than the critical depth,
the state nof stress at the ground surface will be affected only siightly by

the arching of the soil above the yielding structure. |t has been shown

experimentally 7 that the pressure of a vielding structure in a granular

medium has little or no effect on the state of stress at the ground surface
when the depth of burial is on the order of 2 to 3 trimes the width of the

yielding element. If the state of stress at the surface !s not affected by

the yielding structure, then it may be concludad thet failure as defined
herein will not occur. (he structure will be safe provided that it has
sufficient deformation capacity to absord the energy of the initial impulse

applied by tha prassure wave.

Solutions for depths greater then the critical ma. be obtained by
considering the stress field at tha critical depth to be extended by o region
consisting of elastic zones and a centered fan in which the angle B8 undergoes
a change of less than 90°. As the depth increases, the change in 8 spproaches
90" and A at the ground surface spprosches 0°, the value corresponding to the
state of stress existing in the soil if no yielding structure was present.

A stress field for a depth greater than the criticel is shown in

Fig. 5.5(a). Considering the regions to the right of tha axis of symmetry,




the failure region consists of the critical-depth field, regions JAC and 080,
and the centered fan 0C0 in which n = const.

Regions OAC and 08D are taken to be in the elactic state, that is,
they move as rigid bodies. As in the case of the solutions at depths less
than the critical, the velocity field associated with this stress field will
develop if the structure moves vertically downward with 8 uniformly distributed
velccity so that the clastic regions may move downward without deforming. The
railure pressure obtained on the basis of this assumption should be a minimum
since any other motion of the structure requires the elastic regions to hecome
partially or completely plastic and, thus, more work must be done by tne
external loads in defo.ming them.

In the centered fan OCO, the angle 3 changes by an amunt varying

from 0° to 90° depending on the depth. When the changs in B is less than

90°, the point on the En-plane representing region 380 falls between the

B*n/2andB » 0 lines a3 shown In Fig. 5.5(b)
Figure 5.6 shows the stress field for the critical depth and three
other cases at a greater depth for a cohesionless material with® = 30°, It
may be observed from the values of failure pressure given that above the critical
depth the pressure required Tor failure incresses very reapidly. This behavior
should be expected on the dasis of the experimental results mentioned previously
The effect of angle P on fallure pressure at critical derth W is
shown in Fig. £ 7. The semitivity of failure ‘rassure to variations of ¥ 13
spparent here A plot of failure pressure versus depth is given in Fig. S 8
for ® = 30" and k = 0. HKRere the large increase in faiture pressure for depth:

greater than the critical is clearly shown.




5.3 Veioscity Field Solution for the Continuum Theory

The equations of the velocity characteristics and the differential
relations to be satisfied along them for the quasi-static incompressible case
are (ct. Section 3.3):

u = const. family
%5 = tan(B 2 7); vitan (@ - (B2y)) dx-dve=20 (5.3.1}
z = const. family

Lo.coter); veorfa-(0ry))@rave0  (5.3.2)

For the regions to the right of the axis of sysmetry AB, the active

family of slip lines is given by the equation

gf « tan(d ¢ 1) (5.3.3)

Thus, ovne family of valocity characteristics is coincident with the
active family of slip lines and the other femily is orthogonal .

The velocity field charscteristics are shown in Fig. 5.9 in the xy-
plane and in Fig. 3$.10 in the vr-characteristic plane. In region 08D the

angle B maintains the constent value determined by the stress solution to e
B=0

Then, in this region, along toe Iives v = const.

f.wnr:  wmloeyi@ -2 (5.3.4)




and along z = const.

%% = - cot y; cot (a + y)dx + %! =0 (5.3.5)

Integrating the equations to be satisfied along the characteristics yields
atong u = const.; veos{a+r) = Cu(u) (5.3.6)
along z = const.; v sinfa +7v) = Cl(z) (5.3.7)

The initial velocity distribution will be specified at the boundary formed by
the yielding strusture.

It is assumad that the soil particles immediately adjacent to the
yieiding structure will move in a vertical direction, that is, a=0. Ailso,
by virtue of sysmetry, the soil particles muit move vartically (a = 0) along

the axis of symmatry AB. These boundary conditions are given by

on W v e vo(y) (5.3.8)

ae-0
on Ad a«? (5.3.9)

Since both @ and v sre known along the non-cherscteristic B0, the
solution me, be obtained in the triangular reqion formed by 90 and the
cheracteristice 88, and DB, through the pointy 8 and D. Mext, th 1olution
may be obtaincd ir the region li‘! sinCe @ iy xiown along the non-Characteristic
ot

At this stege. cunditions in the curvilinesr region 0CD must be

wongide-ed.




In region GCD it is convenient to express the equations in polar
coordinates r 6 with r measured from the origin of the xy-coordinates and §
measured from the positive y-axis, positive counterclockwise. Ir the new
coordinates, B and & represent the angies between the positive direction
of the radius vector ard the directions of the maximum principal stress and
the velocity vector Y respectively, taking counterclockwise positive. By
using oolar coordinates in region OCD, the angle 8 has a constant value

equal to

B=yx-7y (5.3.10)

In Section 3.6 it wes thown that the angles B and G in polar coordinates

are relsted to B and @ by

(s.3.11)

The characteristics in polar coordinetes end the relations to bde satisfied
along them for dy/dx » ten(B -y ) sciive are (cf. Eqs. 3.6.3 and 3.6.9)

slong u = const.

g . .J%Ll (8.3 12)
ten(@ + m[é . Sﬂir-ﬂ] X ;»-s.:.u)

slong 2 = comst.
f - -\.!'_'2 ($.3.14)




mu5+n%ﬁ+ﬁﬁqyﬁ]+?-o (5.3.15)

The Eqs. (5.3.12) and (5.3.14) may be 'ntegrated to yield the
characteristics
u = const.
1
rere @ty -xitan @
(4]
z = const.

rerel®? % < Y)cot @
-]

where Mo is measured along 00.

Along the limiting slip line CD, the normal component of velocity
vanishes" so that the velocity vectnr at any point on CD has a direction
given by the tangent to (D at that point.

Then along (D the angle ais
awin -y (5.3.18)

Substituting this value of @ intg (5.3.13), the equat on which

holds along the u = const ltine CD, yields
- ki
ttn(!n){dﬂ - SQS.%—QL} - g! =0
Since tan{2x) = O, this equation shows that along 9

év,o 0
(s.2.17)

Vco . const.

The value of &t in xy-coordinates ot noint D is

o+ oy
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Substituting this into (5.3.5), the differentia! equation to be

satisfied alonu the 2z = const. line DE, yields

daDE =0
(5.3.18)

o/ -
g = const Y

Equation (5.3.18) =hows that the angle & underyoes an abrupt change
<'nag the characteristic DE. Substituting the value of a given by (5.3.1%}
into (5 3.7) shows that voE is arbitrary. The value of vog t°© be used along
DE in extending the solution is obtained from the condition that Lhe components
of the velocity vector normal to DE must be continuous when the direction of
the velocity undergoes an abrupt change across Of.

The value of v along (D may now be obtained from the initial velocity

st point D

v

0

Yeo " oor - (5.3.19)

Botk X and v arc now known along the characteristics CD and D
and the solution may be exténded into the region DKESC bounded by the initiasl

characteristics DE and DC and the characteristics [is and CES. The solutien

‘v next obtained in ~eaion Eizr in the 1ame way Ay region Dlit. This mathod

is continued until the solution it oblained in the region !0(”5‘

A methnd of finite-differences is used in obteining the selution in
the curvilinoer cagion 0CD since the equations to be satisfied elong the
characteristics cas not be integrated as they could ir regior 080. For the
finite-difiervnce soluiion the region is divided into & network of u and 2
characiereistics and the node points are numbered by the coordinates k and &
taking i aiony the u = censt lines end &k along the 2 = const. Vines.

&0




Expressed in finite-difference form, the equations aleno the
characleristic become

along u = const.

r -r “ v -V
@ +yNHa, - a - St el ket kel
AN g 27){ék.z W L 0

k, 2-1 Ykot-)
(5.3.20)
along 2 = const.

- - rr - ' - rvﬁL—u Y =
cmwkl-+hﬂm -a ttan® id—“Lqu*“ Lt - o
k1,4 T A kel 49 Yot

(s.3.2¢)

Knowing the values of @ and v at tne points k,4-1 and k-1,4 the
above algsdraic equations may ve solvad to yield G and v at tha point &,8.
The solution far the values of @ and v at node points on the
line 0D are obta:ned by solving {5.3.6) and (5.3.21) simuitansously. Usirg

{5,3.11), the equations to be solved for points on 0D are

- Y =l ‘“(akAl“ * v
%, ¢ coi(bh P r)

v (5.1.22)

and
- - v = )
R RIPELUICHI ’*’{%&.: A NI RS ] ik_"‘ - ] } * Ve
(.3.23)
vhere

.Gu"“.

~oin

Yt vt * Tt s




The solution for 0AC 5 car-iad out in essencially the same wav.

54 Velccity Field for the Mizro-structyral Theory

The velocitv fleld snluticn obtained with the second kinematic
relation will be presented for the correcponding stress ficld salutions of
Scctions 5.1 and 3.2, The velocity of the yielding structure will he assumed
to be uniformly disrribuced, that is, che structure is assumad to move dom
8s a rigid budv. This behavior currespond= to the strass field solutions
glven in Sectior 5.2 in which & region of the gravuiar medium rema‘ny elestic
and moves essentislly as a rigid hod. Solutions fur tne cese of & noneuniform
motion cf the structure asre given in Section 5.3.

The -elociiy egiation of the vasic svstee of the second kingmatic
relation was given in Section 3.7 in polar coordiantes. For dy/de = tan(f - v)

active, this equaticn becomes

sin»%}-iﬁ}l%-r{-;tn@-o (s5.4.1)

The differential equation of the charecteristics whick correspond to the active

slip lines ia

[ 18 (8.4.9)

Ar r

and the diffarential telation which must de setis?ind along the characteristics

is
MY w v ter ¥ A8 {3.4.3)
fquation (5.4.3) yields

{3.4.4)




where v, is an arbitrary constant.

In region 0CD of Fig. §.11, the velocity vector st any point is
tangent to the slip line given by Egq. {5.4.2); however, in region 000' the
velocity vector is vertical. This requires that a velocity discontinuity
forms or the cha.acteristics GD. Similarly, the velocity is discontinuous
across the characteristic 0C. Across a discontinuity of this type only the
targential compenerts of velocity are discontinuous while the normal compo-
ncnts are cc':ntim..cu.ls‘6

The velocity in region OCD just across the discontinuity 0D may b2
sbtained in terms of the velocity of the structure vq. by equating the normal
components of the velacity vectors on each side of 0D as is shown in Fig.

5.12{a). From Fig. 5.12(a)

an - vq sin(r + aoo)

Since the nu Wl comsonents of velacity are equel,

- 5 .
Van * Vo cos(2 r)

v (siny ¢ ﬂn!)
Yoo coc(% - )

The arbitrary constant in Eq. (5.4.%) zvy Pe evaluated a3 foilows:

-y ‘(Y * 500

- &) ten®
Voo i 2

ey |
“e* vool( L 800 * 2) tan @




Eyuation (5.4.4) ncw becomes

X
one(e +3°7 - Bgp) tan @ (5.4.7)

The velocity on OC is obtained by substituting the value of 6 on 0C into

Eq. (5.4.7).

) tan @

- vooc("oc - Poo (s.4.8)

Vac

The velocity in region 0CC!', vp, is obtained in teras of voc by
equating the normal components of velocity across OC as Is shown In Fig.

5.12(b) .
Ve cosly + Boc - ';') " voc co:(% - 2r) ($.4.9)

Substituting Eqs. (5.4.6) and (5.4.8) into Eq. (5.4.9), one obtains the

velocity in reglon 0CC*, v’. as 8 function of vq. the velocity in reglen

00D’ .

sinly +8,.,)
B, -8.) ten @
Yo “ Yo sinly ¢ boc o7 0C L (8.4.10)

“or the stress fiald given in Section 5.1, Doc e /2 ond D. - 0.

Then Eq. 15.4.10) becomes

. .
S . S D A o T - A —

§ ten ®
4.9
Vptvetenre (s 1)
It say now be shown that overall continuity of the veleciiy fleld
is satisfied. Muitiplying the velocity of CCC' by the length CC' glven by

£q. (5.1.14), onc obtains

l'ﬁ(Y‘a) o -8.) 9 N“(T’D)_ e B tan ®
v’*CC'-vq[m-;—’-zycﬂt oo’ ton ‘t'ﬂﬂ?_f'g’.u“ » & 3

(s.4.02)
"




v " CC =v
q

Thus, 3 velocity field has been found which is compatible with the corresponding

stress field.




6. RESULTS AND CONCLUSIONS BASED ON THE QUAS!-STATIC THEORY

6.1 Comparison with Experiments

The results obtained in an analysis using the Geniev theory of
motion of a granular media to predict the intensity of air-induced overpressure
transmitted to an underground structure are shown in Fig. 6.1 along with experi-
mental data obtained by Selig, McKee and Vey. 10,22y experimentsl work was
conducted with a dense, cohesionless Ottawa sand (9 = 35°) contained in 2
glass-walled pressure device. The yielding structure was a 4-inch square plate.
It may be readily seen from Figure 6.1 that the experimental pressures required
for failure are teveral times greater than those predicted by the Geniev
theory. The leck of agreement between these two curves is to be expected
becouse of two major factors. For one, the experiments were not actually per-
farmed under conditions of two-dimensional plane-strain as assumed in the
Geniev theory, since the glass walls of the pressure box contriduted same
frictional resistence to slip. Also, and more significantiy, the Ceniev
theory used Mera sssuses that plestic flow takes place st constant voluse,
that is, the flow is incompressible. in the case of granular materiels, this

sssumption is correct only after initial stip has occurred and the flow field

is estedlished. 3 gor o dense granular materiat, initial siip must be

accampanied by #n increase in voluse as the individual particles "wniock'
from their positions in the dense state and r.de vser o4 scont graing on the
slip-plone. This intuitively spparent bahavior has been proved conclusively

21.24. As slip first occurs, there is & change in volume of

bv experiment
the granyis~ miss, and after o cartain strain the deformation settles dowm
to onc occur-ing at constant volume. It is in this canstent volume daformetion

that th. Geniev theory is applicable.




The volume increase required for slip in dense granular soils and
the lateral corstraint provided by the soil mass itself huve & significant
effact on the pressure required to produce first slip. Terzaghi has indicated
that the so-called internal friction of the soil is a function of the amount
cf lateral expansion possible in the soil and that the angie 9 may vary between
wide limits. 25
in another paper, Terzaghi states that for granular materials the
value of @, the angle of internal friction, may vary between the limits of
30 and 54 degrees. 26 If in the Geniev analysis the value of @ s allowed to
vary in accordance with the degree of laters! constraint provided by the soil
mass at various depti.s, & failure pressure vs. depth of burial curve |3 obtained
which gives much improved agreement with the experimental resuits as show= in
Fig. 6.1. The assumed variation of @ with depth is presented in Fig. 6.2 as
the retio of the vaiue of @ used in determining the fallure pressure at o
particular deoth to 9 the vatue of interna) friction determined by the viua:
laboratory tests. The value of °/c° is assumed to vary fram 1.0 for structures
placed near the ground surfoece where there it a tmall laterai constraint to

1.5 for & depth ot curisl equa' to the spen length. At greater dapths the

value of '/Qo is sssumed Lo remain constant. Although the angle of internsl

friction © is shown to vary with depth in Fig. 6.2, it is not treated a3 @
variable st sny one particuler depth. Sclutions including the eifact of
lateral constraint mey be obtained by vning (™ .:'ue of o, te daterming the
shape of the slip field and then incorporeting thy effuct of leteral constraint
by determining the failure pressure besed on the velus of ® given in Fig. 6.2

for the particular depth associsted with the slip field. This apprrech i




undoubtedly only approximate but it does provide an indication of the pressure
required for first slip of the soil.

Since the pressure required to maintain slip in a deise granular
meterial is less than that required to produce siip, it is clear that a
question of stability is involved in regard to the safety of the structure
after first sliv hos occurred. Whether or not complete collapse of the
structure will take place dejends on the intensity and timewisie variaticn of
the loading pulse and the ductility of the structure. However, the question
of stability does not apply if the failure pressures are determined by the
Geniev analysis (without the lateral constraint correction), since the failura
pressure is based on that required to maintain flow not s...¢ it, and thereby
neglects whet may be an appreciable, although highly undependable, reczistance
of the soil.

6.2 Comparison with Previous Theoratical Studies

A theory of plastic flow of granulsr media developed by Orucker

8,29 has been

and Prager n based on the concepts of the plastic potential

applied by Shield e to problems of plastic flow in granuiar solin. 1n (M
\heory plestic flow of a granviar media is ai-wys sccompanied by & volume
‘ncreate {a property Dvucker and Prager refer to 83 dilatency). Nowever

in this theory the volume expansion continues ot the same rote for all velues
of sirain, ¢ very untikely event for continued nlastic fiow and & behevior
which experimental evidence has shown doss not occur. =3 Ceriev cites
experiments) work on & particuier problem solved snelytically by Shield using
the Orucher-Prager Theory. The test resuits .ndicote that (he flow tre-
jectorias predicied on the bas:s of & constent rere cf volumetric strain theo y

are not realized. Rather, the experimentally datermined flow field could de




hetter approximated by a constant volume (zero rate of volumetric strain)
theory such as Geniev's.

Another solution of the underground structure problem is included
in o theory presented by Terzaghi for the design of tunnels at great dcpths-,
This theory, modified slightly to correspond to the specific probien considered
here, is based on the assumption that the vertical stresses are uniformly
disiributed on horizontal sectiuns and that the siip-planes form vertically.
According to this theory the pressure aoplied at the ground surface to cause

faiiure is given by

: H
Py ™ Q exp (2 1 K tan @) (6.2.1)

where K is an empirical coefficient which represents the ratio chfcv on the
surface of sliding. Terzaghi recommended that the value of K Le at least equal
to unity. Failure pressure vs. depth curves for Terzaghi's theory with
K =1 and K= 1.5 are shown in Fig. 6. along with 8 curve for the Ganiev
theory for @ = 3° and k = 0. The experimental curve given in Fig. 6.1 I
also shown for comparison.

it may be seen from Fig. 6.) that the genersl trend of the Yerazaghi
curves doms not follow aither the Geniav or the erperimental curve excapt
ot depth-span ratios grester than about 1.5, where the Terzoghi nd Ceniev
curves predict very nearly the seme failure pressure.

Al3o shown in Fig. 6.3 is o curve for o theory presente ) by Sellg,
NeKee and Vey, the seme group who presented ¢ experimental rasults shown in
Figs. 6.1 and 6.). Thair thadry is based on the formstion of ver.ical slip
planes and a unifors distribution of verticel stress on hor!zontal sections.

For the qusti-stetic case of & uniform, slowly varying ove. .ressure, this




theory is cssentially the same a< Terzaghi's with a linear variation of

failure pressure vs. depth on semi-lcgarithmic coordinates as shown in Fig

Takagi 3 has presented & theory of granular soils deformation ir

which the volume change resulting from the plastic deformation may be taker
into account. Unfortunately, the rate of volume change is considered to be
constant depending on the nature of the deofrmation. As a result, Takagi's
theory does not account for the real behavior of expansion or contraction ¢

the start of motion and subsequent slip at constant vo'ume.




6 3 Limitetions of the Theory

The resu'ts of this study indicate that the Geniev theory has
several significant limitations when applied to the problem of underground
structures in a granular soil subjected to air overpressures. The fact that
the deformation is assumed to occur at constant volume does not allow the
volume change occurring at initial slip of a dense granular material to be
taken into account. This neglect of the volume increase at initial stip is
particularly significant in the type of probliem considered here, as the
tendency fer @ volume increase brings into pley & considerable lateral con-
straining effec: ir the soil which serves to gieatiy increase the resistance
of the s0il structure system against siip. in contrast to this, 8 constant
volume theory shoule introduce Hittie ecror for problems in which the soil is
pernitied to sxpins at 3 free surfscs such a3 in the determination of the
passive earth prissuie of retaining walls and the bearing capecity of footings.

Anctrer weakness of the Geniev theory cosmon (o all theories of
rigid aiacnic behevior iv the fact that no information is svailsble regarding
the foragtich of failu-e tones from the previcrs elastic equi librium state.
Yo mehor words, with rigid-plastic theories it is not possible tc predict the
origin snd trace the growth of distressed regions in the medium since the
elostic stress distribution prior to flow i s not evaileblie. On the other
hand, with elasto-plastic theories the formstion of fsilure z0nes may Le
previcted from the elastic solution dy intres: ag tre loads until the flow
criterion 13 setisfied.

An important comglication in theories of granvisr medie arises

froe the fact that the failure criterion is o function of the meen rurmsl

n

-



stress a® a poirnt and not simply a function of the deviatoric componen: of

stress as is the case with ides! plasticity. For plasticity problems it has

been shown that upper and lower bounds for the fallure losd may be obtained
32,33,34,35

by application of limit theoress In sddition, these theoreas
guarantes that any solution which is both statically and geomstrically
sdmissable must give the correct fallure load. Wnen the yield criterion
depends on the mear normal stress, the bound theorems of plasticity do not
apply end the fallure load cannot easily be bounded. Howaver, a theory such
as Genlev's which neglects & portich of the soil's resistance will give
conservative fallure pressures.

failure niassures obtainad with the Ceniev theory may be Improved
to account approzimstaly for the effect of lateral constraint of the soll at
initial slip by assuming the angle of internal friction @ to de o function of
the amount of s0il caver over the roof of the structure.

Since lcrge defoivations of a granuler medis occur sssantially ot
constent voluse, the Senlev rolutions should provida o good estimste of the
rezistance of the 10l l-structure systos to susteined toeds If the structure
hay sufficlient ductility to withstand the initial displocement.

Tha resuits of this study indicate that & thecry more resiistic
than Ceniav's is needee for the snalysis of the truly dynamic probien of
soi l-structure interoction. Thls more elebor. te *heary suit necs.earl ly
include the effects of exponsion or cumtraction of the granvier el o
aotion tekes ploce and the relation between this velume chunge ond the
fatilure law. In sddition, the mete of Seveicpment of ‘ol lure 2emes regmires

clorification in future work.
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APPENDIX: APPROXIMATE DYNAMIC THEORY FOR $OIL-STRUCTURE INTERACT ION

A.1 General
The purpose of this Aopendix is to present a simple approximate
method of introducing time into the juasi-static solutions obtained in

Chapter 5. In developing the approximate method it is assumed that the slip

lines found for the yuasi-static solution do not change appreciabiy with
time. |In this way, a one-dimensional treatment is possible which, for loung
times, approathes the quasi-static case previously found. For simplicity in
this treatment the resistance of the structure was taken as constant.

For extremely short times, of the order of the time for the first
effects to reach the structure from the surface above it, it is n.t easy to

give an 3 priori justification of the present approximate theory. The final

cvaluation of this approximation will have to await comparison with more

exact analytical solutions or with 2xperiments.
We consider here the static problem, treated in Section 5.1, of a
long plate below & finite depth of soil layer. The sail layer is supported
by & rigid plane encept for the part carried by the plate. The static and
the guasi-static solutions of this prodlem with a uniform static load on the
top of the 30i) layer is trested in grest detail in the main body of thiy

report. Referring to Fig. A.1, the values of B in the regions OAB and 0CD

are 0 and ¢ ;, respectively. in ths region UBD, B 13 given by

Bef vy, rec<(red

Cquation of siip line 80 is

% L cosecy o (€-7) tng

r =
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The depth of the soil layer as a function of the span of the plate

and the angie of internal friction of the soil is given by *
he 3L (coty + e-g taney . .22
2 4 4 2

h =

°

Ltan V ; U= —+ %

~l—
&la

A.. Basic Equations of Approximate One-Dimensionai Problem

The stress components are expressed in the following way:

. L1+ sing cos 2B) H(x,t)
N ] 7T sTn n cos Zﬁ] (A.2.13)
y o, = Hx.1) (A.2.1b)

: . sin @ sin 2P H{x,t)
¢ cxy [l - sin g cOs 25] (A.2.10)

Here B = B(x,y) is known througnout the region and H{x,t) is
unknown. We can isoiate a small layer of the soil such as AD A, 'I .0 at
any height x, and consider the equilibrium of that rlemental layer. From
Fig. A.2, it can bc scen that the layer is acted on by the vertice! average
stress ¥in) M(x,?) along Ag By and the normal and tangential stresses o and
T, on the inclined faces A‘ Ao and .I '0' The stresses on the inclined

faces have to satisfy the boundary condition

T, %0, o

To find the normal component Oy we refer to Fig. A.J which shows

an elemental soil mass at the . clined boundary with all the stresses acting

on it: three faces. From Fig. A.3 we have




+9 =g cos (B+y + 0 "°,y"“ B+y+0q

- dx _d_x .
Y'oyds+°xyds-°y sin (B+vy + o) ¥ 0, <o B+y+09

cn-icos B+y+0) +Ysin(p+y +09

=0, cos? (B+y + 0 *oy sin2 B+y +09 *0" sin 2(B + v + @)

Using Eqs. (A.2.1) and simplifying, we obtain the normal and

tangential stresses to be

r 2
-’ cos_ @ H(x,t)
%n [T -sing cos ZB] (A.2.22)
T = f__sing cos l Hix.t) (A.2.20)
n Lt-sinoco&ZJ 2.

The total vertical component of the normal and tangentis! stresses is

cos ¢ cos (P + i)] Hix,t)
1 - $IN @ ¢O8 .

The total vertical forces from the two faces AO A' and lo ll:

F oo cos (Bey +0 +v sin(Dey +9) =
x n n L

2F dx

—TEr 2 1(8) H(x.0) ex

2F dy =
®

where f(B) is given by

LT zoy p cos (p ¢+
t(8; ‘;‘s'm zb *v) Al - g w08 ]

Writing the equation of motion in the vertical direction, we have

-vng(n)-'?:(ny) dn 4(x) * M ¢ 2(x) - 2¢ (B)Ndnooil(n) dn =

» o #(n) dn .
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Here,
1

a3 £(x)
v (x) = £(x) / | r (8) dy
-3 £(x)

where

"1+ sin @ cos 23}
1 - sin o cos 28

Y‘(ﬂ\-

1(x) length of the elemental layer at a height x,
X - body force intensity

2 = aceeleration of the layer,

[ K" . . R
" *voe . dince x i3 an Eulerian coordinate,

vix,t) = average velocity of the layer
Simplitying the sbove expression, we obtain the equation of motion

of the layer :n the form:

(. L. 1 ps vt
L PO (=) w 'l (u) Nj = ;E! (A.2.0)

where
L (=) = {gz *2 %{E}}

the velocity win, 1) has to satisfy the continuity eouation which iy oF the

form.

gs . ien + %Sz -0 (A.2.4)

Here we hove two uknowns, H(x.t) and v(xn, t), and two equetions, (A.2.3) end

(A.2.40 to obtain them.




A.3 Expressions for B(x,y) and f£(x)

To obtain the function y(x), we have to evaluate the integra)

+- 2(x)

¥(x) -TT f r (B) dy

—tx

1Y

This is difficult to do exactly since B(x,y) is a complicated function of
x and y and, also, the limit y = + f(x) is actually a transcendental function.
Instead, we can find an approximate expression for the average vaiue of

B(x,y) over the range -h < x <0 as a function of x only. Then,

B(x,y) = B(x) and T[(B) = I'(R)

We can obtain the function y(x) easily as follows:

=3

r+-z()
v(x)-—}ﬁ}J__m; )

Now, B(x) has to satisfy the following conditions:

B=o, %-o X0 (A.3.12)
5--5. %-0 x ® =h (h.3.1p) J
B-v. R e «h (A.J.\C)

1
We can take B(x} as & polynomial in x with five constants and
obtain the constants to satisfy the conditions (A.3.1). Then we et the

following expression for B(x):
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P(x) = 53(3+5)+ "2(|+5)2 (A.3.2)
x "hz P “.;7 R
where d
n 2 3 N K
v G o
- h (_h__)
- hz N2
(“#) [ ) ‘-
Now,

0T [U‘-s:‘n Qﬂs?nzzﬂ) i] g

We need this derivative of y(x) in evaluating tha function {(x).

The function #(x) which gives the widgth of the elsmental layer at
any height = is requirad to evaluste the function L(x) which i a variable
coefficient of £a. (A.2.3). In cartesian coordinates, (f we assign any value
for x, we have to compte 4(x) as a solution of a transcendental equation, as
the equation of the curve 80 in Fig. A.l (s known in polar coordinates.
Instead, we can assignvalues of angle 6 in the range v and (r *f) and then
compute the values of £{x) in & very simple mcansr from the following

equations:

s --—-—.‘:r[sano o 0-n “""]
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These equations are useful to compute the functions ¥(x) ana {1x) as functivus

of 6.

A.4 Boundary and Initial Conditions

On the top of the soil layer a uniform load which is a function of
time acts vertically down. At the bottom of the soi! layer, the component
ot the stress in the soil normal tc the plate at the interface wi!l be the
load on the plate so that this is resisted by the inertia of the plate as
well as its yield resistance. |t is assumed that there is no separation
between soil and the plate along the interface so that the velocity of a
point of the plate is the same as the adjacert velocity of the soil. Hence,
the boundary conditions may be defined as fo!lows:

on the top where x = «h
o, " P(t)

at the bottom where x = 0

avi{0, t
o = op My JBTL + k(0,1)

where

o0 * density of the material of the plate,

hP = thickness of the plete

K = yield resistance of the pla: ..

Using Eqs. (A.2.1) the boundary conditions msy be written as

K (-h,t) = ({—f—«}{%ﬁ) P(v) x = <h (A.4.1)
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I + sing t

H (0,t) = (-!-'——‘-i—"-ﬂ) (pP hp dvio,t) K) Xu0 (A.4.1b)

Tne initiai conditions may be

H (x,0) = H (X and v (x,0) = v, (x) at t =0 (A.4.2)

A.S Method of Solution

Equations (A.2.3) and (A.2.4) are quasilinear with two unknowns

© e e —e——c

H(x,t) and v(x,t) and they can be solvad by the method of characteristics. :

The density of the soil p is taken to be a function of pressure, so that

s g —

p = p(H)

th dp 3h |
- g-ES-owg |
o) .;
and %_gﬁ :‘-p' (m% t
where o' (H) = ﬁ ‘

Subsiitutine these expressions into Eq. (A.2.4) we obtain

% B SIS T (hs. ‘-

%ﬂ L - L g
t - dt at .

god.pa ‘
t dt dt
Substituting these a-1ations into {A.2.3) and (A.5.1) and simplifying, we

obtain
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(A.S.2a)

{A.5.2b)

From Eqs. (A.5.2) we can solve for the partial derivatives of H(x,t) and

v(x,t) to get the characteristics and the equations to be integrated along

them as follows:

‘ (v - %%

By setting the denominator equal to zero and sinplfying, we find

the characteristic equations

2% - [v * u(H)]

u(H) = ~JViL: i%

By setting the numerator equal to ero, we find the equations to

be integrated along the characteristics:

v(x) 5% t (W [a % +0{») Hep x] =0 {(A.5.5)
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Hence, we have the following set of ordinary differential equations:

dx - [:v +u(H)] dt = 0

3-83- dH + p(H) dv +[g(x) H- px] dt = 0

dx-ll:v-u(ﬂ)] dt = 0

‘ﬁﬁ}dﬂ- o(H) dv -[;(x) H- px] dt = 0

We have thus reduced the quasilinear partial differential equations, (A.2.3)
and (A.2.4) to a set of ordinary differential aquations which can be solved

numerically by the method of finite differences.

A.6 Method of Finite Differences

Equations (A.5.6) may be written in finite~difference form for
the purpose of numerical computation. The first step is to transform fqs.
(A.5.8) to curvilinesr coordinates of the characteristics. Let the first

and the second characteristics, respectively, be given by

U= U(a,t}] = constant

1= 2{x,t) » constent

We cen take these as curvilinear coordinates and transform fqs. (A.$.68)
from xt-plane to UZ-plene by tresting x, t, h and v as functions of U and 1.

Along the first system of characteristics we have

du-§d£ : dt-gdl
eu-%az ; dv-%dl




Similar relations are written for the U-characteristics.
With the help of these relations, Eqs. (A.5.6) may be written in the UZ-plane

in the form:

-[V'*u(ﬂ)]%zt'-o

%"'pg%*‘[;ﬂ-px%%]ua

%~[v-nm]§-o

{(A.6.1b)

Now, the derivatives can be written as differences over a finite length as

follows:

§.fkl- furg g%_ o fgen
1 i a

following this rule, €qs. (A.5.6) are written as difference aquations

83 shown below:

.
LW WEL ['k,l-l Pl ] (gt Y =0 (Re20)

Boe s " g - ['u-u - “"‘u-x.t’] (6,4 tir, g =0 (A6

(r.8.2¢)

M [Su.;—a WL W lu,;-l] by, =0
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MW £) L R R WA WA R WU (A.6.2d)

-
NN SRS W X‘k-l,;] oty = 0

Equations (A.6.2a) and (A.6.2b) give the values of x and t at any
point (k,2} in tihe UZ-plane with the known values of x, <, H and v at the
previous points (k-1,4) and (k,s-1). Similarly, F3s. (A.6.2¢) and (A.5.2d)
give the values of H and v at the point (k,8) with the vnown values at the
previous points (k-1,2) and (k,1-1). Using these relations a computetional
scheme may be easily arrived at.

The network on the yl-plane is shown in Fig. A.4. 58 represents the
initial conditions. |In the rzgion ABC, along the line AB, we know the values
of x, t, H and v, the given initial conditions. At points along t = 0, we

have the following data:

Points 16,1) (.3

Ve may compute x, t, N and v at various points in the region ABC

in the followiag menner:




6,2) (5,3) (4,4) (3,5) (2,6)
(6,3) (5,4) (4,5) (3,6)
(6,4) (5,5 (4,6)

(6,5) (5,6)

(6,6)

At each of these points we have the following four equstions:

('66 - xss) - [vss + “("65)] (t“ - :65) =0 (A.6.32)

(xgg = Xgg) = ["ss . “("ss’] (tgg - tggh = O (A.6.3b)

o5
MOW (Hgg = Mgg) * pgg (vgg = vgs) +
(A.6.3¢)
(Los Hgs - Pgs Xgs) -at) = 0

'
5
TThgyr (Mes = Mg - 956 {ves - vsd) -

(A.5.34d)
(‘“ ““ - 9“ l“) . A‘z -0

oty = (tgq - tog)
Bty = (tge - tog)

in the reglon ACD, we may proceed along the points shown below:




(2,7) (3,7 (4,7 (5,7 (5.7
(3,8) (4,8) (5,8) (6,8)
(4,9) (5,9) (6,9
(5,100  (6,10)

(s,1)

To compute the “alues at the point (2,7):

(x)y = %g¢) - ['zs + “("zs)] (t)y - tyg) =0 (A.6.40)

l27 = -h (A.6.4b)

v
26
MCm (Hyy = Hag) + 03¢ (vgy = vag) * (A.6.4¢c)

+ (§26 Mag = Pgg %26 (tyy = tae) =0

Hyy = (: u ::: olty,) (A.8.4¢)

These equations are to be used at points (2,7), (3.8), (4,9),
(5.10) and (6,11), which are the boundary points. At the other points, the
same equations as in the region ABC are to be used.

In the region BCE, the values at points are computed in the follow
ing manner:

(1.2 {1,3) (1.4) (7.9 (7.0)
N e s (e
(9,9 (9.5) (9.6)
(10.9)  (10,0)
(1,6




To compute the values at the point (7,2) we use the following

equations:
( ) - 0 (A.6.4a) '
Xy2 = %g2) - L\162 - u(Hsz) (t72 - tsz) - .6.4a
2 = 0 (A.6.4b)
vte'z'Y (Hyp ~ Hgp) - (v, = vg)) (A.6.4c)
Wi 12 " Te2’ T Pe2 MY12 T Ve2 6.
- (g Me2 = P62 X2 (tyy - teg) = ©
. v v
. (L= sing 12 - 62 A
"2 (I + sin o) op Mp {1t * K (A.6 .44)
72 6
These equations should be used at points (7,2), (8,3), (9,4), R !;
b

(10,5) and (11,6} as the boundary points. At other points, the same equations
83 in region ABC sre used.

¢ in the region DCEF, the unknowns at various points are computed s

follows:
(2.7 (8,7 (9.7 (10,7 (v
(7.8 (6.8) (9.0) (10.8) ave
(.9 (8,9) (9.9 {10.9) (11,9)

{1.10) (8.10) (9.10) {10, 1) (11,10)

(2,11) (8.11) (9.1Y) (10,11 (v, 1)

At all these coints, seme equations 23 in the region ABC are used.
The regi>n DFG is cimilar to the reqion ACD and the region EF) iy

similar to the region BCE and 30 on.
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